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Letters

Expressions for Wavelength and Impedance of a Slotline
RAMESH GARG anp K. C. GUPTA

Abstract—Closed-form approximate expressions for slot wavelength
and characteristic impedance for a slotline are presented. These ex-
pressions have an accuracy of about 2 percent for substrate permittivity
ranging between 9.7 and 20.

The slotline was introduced in 1969 [1] but its usage in micro-
wave integrated circuits has been relatively slow. It may be
partly due to the nonavailability of closed-form expressions for
slot wavelength 4’ and the slotline characteristic impedance Z,,.
A method of calculating A" and Z, has been given by Cohn [1].
In this method slot wavelength is obtained by equating the total
susceptance at the iris plane to zero. The calculation of Z,
involves differentials of total susceptance and slot wavelength
with frequency. These computations are iterative in nature and
thus fairly involved. The numerical results for A’ and Z, for some
set of parameters have been presented in the form of graphs by
Mariani ez al. [2]. They have selected five values of the dielectric
constant ranging between 9.6 and 20. These graphs are useful
only for the set of parameters indicated since the method of
interpolation has not been provided.

This letter provides closed-form expressions for the slot
wavelength and characteristic impedance. These expressions have
been arrived at by means of curve fitting the numerical results
based on Cohn’s analysis and valid for the values of dielectric
constant between 9.7 and 20. The upper limit on the value of
W /d has been restricted to unity since Cohn’s analysis of slot line
is valid for W < d, where W and d are defined in Fig. 1.

The closed-form expressions given in this letter have an
accuracy of about 2 percent for the following set of parameters:

97 <& <20
0.02 < W/d < 1.0

and

0.01 < d/A < (dfX)

where (d/A)o is equal to the cutoff for the TE;, surface-wave
mode on the slotline, and is given by

@/0o = 0.25/\e, — 1. )

The expressions obtained by curve fitting the numerical
results, based on Cohn’s analysis [1] are given as follows.

1) For 002 < W/d < 0.2:
A'fA = 0923 — 0448 log e, + 0.2W/d

~ (0.29W/d + 0.047) log (d/A x 10?) @)
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Fig. 1. Slotline configuration.

Wwid — 0.02)(W/d — 0.1)
wid

+ log (W/d x 10%)[44.28 — 19.58 log &,]
— [0.32log e, — 0.11 + W/d(1.07 log ¢, + 1.44)]
. (114 — 607 log e, — d/A x 10%)2. 3
2) For02 < Wjd < 1.0: '
XA = 0.987 — 0.483 log e, + W/d(0.111 — 0.0022¢,)
— (0.121 + 0.094W/d ~ 0.0032¢,) log (d/4 x 10%) (4)
Z, = 113.19 — 53.55log s, + 1.25W/d(114.59 — 51.88 log 2,)
+ 20W/d — 02)1 — W/d) ‘
— [0.15 + 023 log &, + W/d(—0.79 + 2.07 log &,)]
- [(10.25 — 5logs, + W/d2.1 — 1.42log &)
— dji % 10%?]. : )

The logarithms are to the base 10 in the previous expressions.
It is expected that approximate results reported in this letter
will be useful in the design of slotline circuits.

Zy = 72.62 — 35.191og e, + 50
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Comments on “Approximation for the Symmetrical Parallel-
Strip Transmission Line”

RAYMOND CRAMPAGNE anp GRATIA KHOO

In a recent article,’ Rochelle gave an approximation for the
capacitance of both “wide” and “narrow” parallel-strip trans-
mission lines in a homogeneous, lossless, dielectric medium.
The author obtained a final, unique formula, which is an
advantage. :
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TABLE 1
APPROXIMATE VALUES OF C/4ne, FOR
PARALLEL-STRIP TRANSMISSION LINES

C/awé€,

R C/4w &, R C/4wE, R
g 0.84762 0.3 0.15878 0.09 0.06587 °
8 0.76542 0.8 0.14905 0.08 0.06389
7 0.68290 0.7 0.13815 0.07 0.068178
6 0.59997 0.8 0.12901 0.06 0.05952
5 0.51651 0.5 0.11857 0.05 0.05705
4 0.43230 0.4 D.}U?BB 0.04 0.05428
3 0.34685 0.3 0.09611 0.03 0.05108
2.5 §.30364 0.25 0.08982 0.025 0.04828
2 0.25970 0.2 0.08331 0:02 0.04718
1.5 0.21481 0.15 0.07607 0.015 0.04475
4 0.16837 0.1 0.08775 0.01 0.04172
; . . . . 4
In our case, the capacity required for the detailed comparison | .
i : : Relative | Wheaeler's Approxmations for
of different formulas found in the literature are calculated by Error In Y |
means of the classical Kristoffel-Schwarz transformation. - ,' narrow  strips == ==
In fact, according to notations used [footnote 1, Fig. 1], | wide strips
the capacitance is given by [1], [2] o8l I
C = gK'(k)/K (k) (1a)
B I
where k is a solution of the following transcendental equation: ,' negative polarity
i
2 , ! [
R= K(K') Zn (u,k') (1b) ,1
where Zn (u,k’) is a Jacobi zeta function and =/2 is a parameter - ,'
which is given as a function of complete elliptic integrals. |
Nowadays, the complete or incomplete elliptic functions of g4t |
any type can be calculated easily with the help of a computer, ,'
even for values of arguments close to z/2; for the latter case, i |
formulas which accelerate the numerical convergence are l'
available [3]. Hence, (1a) and (1b) have been programmed by |
classical methods given in [3]_: the calculations are extremely  %3[ ”
rapid requiring about 0.1 s of the central unit for an Iris 80 CII. |
The errors involved in using Wheeler’s [4] formulas for narrow - .
and wide strips are calculated from the numerical values given —positive  polarity
in Table I ozl
C = ney[In (4/R) + (1/8)R?*1"1F/m, R<1
C = Rg[l + (1/nR) In (2ne(R + 0.92))], R>1 |
which is shown in Fig. 1, where a maximum error of 0.6 percent oal-
corresponding to R'= 0.9 was obtained. Point A4 in Fig. 1
corresponds to a sign change in error polarity. . |
With the help of exact values obtained by the Kristoffel-
Schwarz transformation, the error involved in the use of - AV ‘ N
Rochelle’s formula (10) is shown in Fig. 2. A maximum error 053 o4 08 1 2 3 4 8 6 77

of 5.5 percent corresponding to R ="1.4 is obtained. It is

Fig.1. Errorintroduced by Wheeler’s formulas for wide and narrow strips.
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Fig. 2. Error introduced by Rochelle’s formula.

important to note that this error is always greater than 3 percent
for 0.1 < R < 10. It is therefore advisable to add a correction
coefficient of 1.04 to [footnote 1, eq. (10)] as long as R lies
within the interval (0.1,10).

Although, theoretically [fodtnote 1, eq. (10)] is extremely
interesting, the error involvéd is approximately ten times greater
than that of Wheeler. Moreover, it appears that the comparison
of [footnote 1, eq. (10)] with Bromwich’s formulas (graphs 4
and B of the article) is not very judicious, since the latter formulas
are less accurate than Wheeler’s.

The numerical resilts shown in Table I allow the precision
of diverse approximations made on the pdrallel conductor
transmission line to be measured.
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On the Accuracy of the Beam-Wave Theory of the Open
Resonator

A. L. CULLEN

In an interesting paper Erickson [1] has demonstrated how
perturbation theory can be used to improve the accuracy of the
beam-wave theory of the open resonmator. Specifically, two
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defects of beam-wave theory are considered. The first is that the
equiphase surfaces of beam-wave theory are not spherical, the
second is that the wave function employed is only an approximate
solution to the wave equation.

There is, however, a third defect of an equally fundamental
nature, namely, that the boundary condition # = 0 over the
whole surface of each mirror is not correct for spherical mirrors,
if, as is implied, u represents one of the Cartesian components,
say E,, of the transverse electric field. This point has already
been considered briefly by Cullen et al. [2]. The purpose of the
present letter is to demonstrate that this boundary condition
error is in fact of comparable importance to.the other two
defects, at least for the fundamental mode p = [ = 0.

For this mode, the fractional frequency-shift correction arising
from the approximation made in the wave equation is given by
Erickson [1, eq. (28)].

é_j.l. = i tan~ ! (fﬁ) . €))

f nd 8ko
1 4
( kowo) @

This equation can be written

A 2 an? {( 1 )42&1} ~ 2

f nd kOWO A
the approximate form being vadlid when (kowo)* > 2n(d/A).
Thus the error in the simple beam-wave formula for resonant
frequency arising from an approximate wave equation is of the
order (kowo)~*. We shall now show that the error due to the use
of an incorrect boundary condition is of the same order.

The physical reason why E, # 0 on the mirror surface is clear;
the electric vector will be normal to the mirror at its surface,
and so there will in general be finite components of E, and E,
on the surface, though these will both vanish on the axis. Suppose
# and v represent two different representations of E,; both
satisfy the wave equation, # = 0 on S, but » = p,on §, S being
the surface of one of the mirrors. Then the fractional change in




