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Letters

Expressions for Wavelength and Impedance of a Slotline

RAMESH GARG AND K. C. GUPTA

.4fistract-C1osed-form approximate expressions for slot wavelength

and characteristic impedance for a slotline are presented. These ex-
pressions have an accuracy of about 2 percent for substrate permittivity
ranging between 9.7 and 20.

The slotline was introduced in 1969 [1] but its usage in micro-

wave integrated circuits has been relatively slow. It may be

partly due to the nonavailability of closed-form expressions for

slot wavelength J’ and the slotline characteristic impedance 2..

A method of calculating 1’ and 20 has been given by Cohn [1].

In this method slot wavelength is obtained by equating the total

susceptance at the iris plane to zero. The calculation of 20

involves differentials of total susceptance and slot wavelength

with frequency. These computations are iterative in nature and

thus fairly involved. The numerical results for A’ and 20 for some

set of parameters have been presented in the form of graphs by

Mariani et al, [2]. They have seleeted five values of the dielectric

constant ranging between 9.6 and 20. These graphs are useful

only for the set of parameters indicated since the method of

interpolation has not been provided.

This letter provides closed-form expressions for the slot

wavelength and characteristic impedance. These expressions have

been arrived at by means of curve fitting the numerical results

based on Cohn’s analysis and valid for the values of dielectric

constant between 9.7 and 20. The upper limit on the value of

W/d has been restricted to unity since Cohn’s analysis of slot line

is valid for W s d, where Wand d are defined in Fig. 1.

The closed-form expressions given in this letter have an

accuracy of about 2 percent for the following set of parameters:

9.75 e, 520

0.02< W/d < 1.0

and

0.01 s d/A s (d/A).

where (d/A). is equal to the cutoff for the TEI o surface-wave

mode on the slotline, and is given by

(d/A). = 0.25/~. (1)

The expressions obtained by curve fitting the numerical

results, based on Cohn’s analysis [1] are given as follows.

1) For 0.02< W/d <0.2:

X/A = 0,923 – 0.448 log c, + 0.2 W/d

– (0,29 W/d + 0.047) log (d/l X 102) (2)
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Fig. 1. Slotline configuration.

20 = 72,62 – 35,19 loge, + 50
( W/d - 0.02)( W/d - 0.1)

W/d

+ log ( W/d X 102) [44.28 - 19.58 log 8,]

- [0.32 log .s, -0.11 + W/d(l.07 loge, + 1.44)]

. (11.4 – 6.07 logs, - d/2 X 102)2. (3)

2) For 0.2< W/d s 1.0:

X/a =

20 =

0.987 – 0.483 log t, + W/d(O.l 11 – 0.0022e,)

- (0.121 + 0.094 W/d – 0.0032s,) log (d/J x 102) (4)

113.19 – 53.55 loge, + 1.25 W/d(l14.59 -51.88 log s,)

+ 20( W/d – 0.2)(1 – W/d)

- [0.15 + 0.23 log g, + W/d(-O.79 + 2.07 log s,)]

. [(10.25 – 5 logs, + W/d(2.l -1.42 log Q

— d/2 X 102)2]. (5)

The logarithms are to the base 10 in the previous expressions.

It is expected that approximate results reported in this letter

will be useful in the design of slotline circuits.
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Comments on “Approximation for the Symmetrical Parallel-

Strip Transmission Line”

RAYMOND CRAMPAGNE AND GRATIA KHOO

In a recent article,l Rochelle gave an approximation for the

capacitance of both “wide” and “narrow” parallel-strip trans-

mission lines in a homogeneous, lossless, dielectric medium.

The author obtained a final, unique formula, which is an

advantage.
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TABLE I
APPROXl~A~B VALUES OF C/4m0 FOR
PARALLEL-STRIP TRANSMISSIONLINES

R c/4_rT k. R c/47t. R c/4 TiE.

9 0.84762 0.9 0.1587’6 0.09 0.065B7

8 0.76542 0.8 0.14905 0.0’9 0.06389

7 0.68290 0.7 0.13915 0.07 0.06179

6 0,59997 0,6 0.12901 0.06 0.05952

5 0.51651 0.5 0.11857 0.05 0.05705

4 0.43230 0.4 0.10768 0.04 0.05428

3 0.34695 0.3 0.09611 0.03 0.05109

2.5 0.30364 0.25 0.06992 0.025 0.04926

2 0.25970 0.2 0.06331 0.02 0.04718

1.5 0.21461 0.15 0.07607 0,015 0.04475

1 0.16837 0.1 0.06775 0.01 0.04172
.

In our case, the capacity required for the detailed comparison

of different formulas found in the literature are calculated by

means of the classical Kristoffel-Schwarz transformation.

In fact, according to notations used [footnote 1, Fig. 1],

the capacitance is given by [1], [2]

C z eoK’(k)/K(k) (la)

where k is a solution of the following transcendental equation:

R = ~ K(k’) Zn (,u,k’) (lb)

where Zn (p,k’) is a Jacobi zeta function and z[2 is a parameter

which is given as a function of complete elliptic integrals.

Nowadays, the complete ,or incomplete elliptic functions of

any type can be calculated easily with the help of a computer,

even for values of arguments close to ir/2; for the latter case,

formulas which accelerate the numerical convergence are

available [3]. Hence, (1a) and (lb) have been programmed by

classical methods given in [3]: the calculations are extremely

rapid requiring about 0.1 s of the central unit for an Iris 80 CII.

The errors involved in using Wheeler’s [4] formulas for narrow

and wide strips are calculated from the numerical values given

in Table I

c = m. [ln (4/R) + (1/8)R2 ]-iF/m, R<l

C = Reo [1 + (1/zR) In (27ce(R + 0.92))], R>l

which is shown in Fig. 1, where a maximum error of 0.6 percent

corresponding to R = 0.9 was obtained. Point A in Fig. 1

corresponds to a sign change in error polarity.

With the help of exact values obtained by the Kristoffei-

Schwarz transformation, the error involved in the use of

Rochelle’s formula (10) is shown in Fig. 2. A maximum error

of 5.5 percent corresponding to R =‘ 1.4 is obtained. It is
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Fig. 1. Error introduced by Wheeler’s formulas for wide and narrow strips.
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Fig. 2. Error introduced by Rochelle’s formula.

important to note that this error is always greater than 3 percent

fok 0.1 < R c 10. It is therefore advisable to add a correction

coefficient of 1.04 to [footnote 1, eq. (10)] as long as R lies

within the interval (O.1,10).

Although, theoretically [footnote 1, eq. (10)] is extremely

interesting, the error involved is approximately ten times greater

than that of Wheeler. Moreover, it appears that the comparison

of [footnote 1, eq. (10)] with Bromwich’s formulas (graphs A

and ,B of the article) is not very judicious, since the lWter formulas

are less accurate than Wheeler’s.

The numerical resdlts shown in Table I allow the precision

of diverse approximations made on the parallel conductor

transmission line to be measured.
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On ihe Accuracy of the Beam-Wave Tlieory of the Open

Resonator

A. L. CULLEN

In an interesting paper Erickson [1] has demonstrated how

perturbation theory can be used to improve the accuracy of the

beam-wave theory of the open resonator. Specifically, two
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defects of beam-wave theory are considered. The first is that the

equiphase surfaces of beam-wave theory are not spherical, the

second is that the wave function employed is only an approximate

solution to the wave equation.

There is, however, a third defect of an equally fundamental

natttre, namely, that the boundary condition u = O over the

whole surface of each mirror is not correct for spherical mirrors,

if, as is implied, u represents one of the Cartesian components,

say EX, of the transverse electric field. This point has already

been considered briefly by Cullen et al. [2]. The purpose of the

present letter is to demonstrate that this boundary condition

error is in fact of comparable importance to the other two

defects, at least for the fundamental mode p = 1 = O.

For this mode, the fractional frequency-shift correction arising

from the approximation made in the wave equation is given by

Erickson [1, eq. (28)].

g’= ~ ()~d tan”l 4! .
f 8ko

(1)

,,
This equation can be written

Af
—.

f $’an-’((a’=]“2(k)’ ‘2)
the approximate form being valid when (kowo)4 >> 27r(d/~).

Thus the error in the simple beam-wave formula for resonant

frequency arising from an approximate wave equation is of the

order (kowo)– 4. We shall now show that the error due to the use

of an incorrect boundary condition is of the same order.

The physical reason why EX # O on the mirror surface is clear;

the electric vector will be normal to the mirror at its surface,

and so there will in general be finite components of EX and EY

on the surface, though these will both vanish on the axis. Suppose

u and v represent two different representations of EX; both

satisfy the wave equation, u = O on S, but n = v, on S, S being

the surface of one of the mirrors. Then the fractional change in


